
Low latency GC in OpenJDK
Generational Z GC

Jean-Philippe Bempel
 @jpbempel 1

Agenda

● Why another GC?

● How Z GC works?
○ non generational
○ generational

● How to size & troubleshoot?

2

Why another GC?

3

Trade off

● Throughput => ParallelGC

● Small footprint/Small heap => SerialGC

● Low pause time/Latency => ?

(Alternatives: C4, Shenandoah)

4

● Dev started in 2015

● Open sourced dec 2017

● merged in OpenJDK 11 as experimental

● Production ready with OpenJDK 15

● Generational since OpenJDK 21

History

5

https://openjdk.org/jeps/333
https://openjdk.org/jeps/377
https://openjdk.org/jeps/439

Z GC Characteristics

● Low latency (max pauses <1ms)

● Large heaps (up to 16TB)

● Scalable (not dependant of the size or content of the Heap)

6

How Z GC works?
non generational

7

Phases

8

Mark +
Remap

Ref processing
RelocationSet selection Relocation

��STOP ��STOP ��STOP

Mark start Mark end Relocate

Colored Pointers

● store metadata in reference addresses

● 44 bits for addressing heap (16TB max)

● compared to global good color in load barriers

9

reference address (44bits)unused (16 bits)

marked0

marked1

remapped

finalizable

● Same physical page virtual mapped 3 times

● no need to unmask

● reports 3x mem RSS used 🤨

Multi mapping

10

Virtual Memory

Physical Memory

0 2^64

0 2^37

(marked0)
001<address>

(marked1)
010<address>

(remapped)
100<address>

● Ensure good invariants before loading ref address
○ Object marked during marking
○ Object relocated/correct new address

● Checking good color (global state) stored in ThreadLocal

● Done before dereferencing (load time)

● Allows JIT optimization (1 load, n deref)

Barriers

11

mov rbp,QWORD PTR [r10+0xb8]
test QWORD PTR [r15+0x28],rbp
jne slow_path

Pauses

Mark start:
● Flip good color (marked0/1)
● reset structures and stats

Mark end:
● Verify Marking ended

Relocation start:
● Flip good color (relocate)
● Update stats

12

Why pauses are so small?

13

● Everything else is concurrent:
○ regular GC phases (Mark, reloc, remap)
○ Refs processing (Weak, Soft, Phantom)
○ Class unloading

● ThreadLocal Handsakes (JEP 312, JDK 10)

● Concurrent Thread-Stack Processing (JEP 376, JDK16)

Z GC cycle example

14

GC
roots

Marked0

A
B

C

D

E

Good color

Marking

15

GC
roots

Marked0

A
B

C

D

E

Good color

Page evacuation selection

16

GC
roots

Marked0

A
B

C

D

E

Good color

Relocation: flipping good color

17

GC
roots

Remapped

A
B

C

D

E

Good color

Relocation: User thread access

18

GC
roots

Remapped

A
B

C

D

E

Good color

T1

Relocation: evacuating objects

19

GC
roots

Remapped

A
B

C

D

E

Good color

D’

T1

Relocation: forward table

20

GC
roots

Remapped

A
B

C

D

E

Good color

D’

D -> D’

T1

Relocation: fix address

21

GC
roots

Remapped

A
B

C

D

E

Good color

D’

D -> D’

T1

Relocation: Page reclamation

22

GC
roots

Remapped

A
B

E

Good color

D’

D -> D’

T1

Remap + Mark: flipping good color

23

GC
roots

Marked1

A
B

E

Good color

D’

D -> D’

T1

End cycle/Begin next cycle:
Remap + Mark

24

GC
roots

Marked1

A
B

E

Good color

D’

D -> D’

T1

Dropping forwarding table

25

GC
roots

Marked1

A
B

E

Good color

D’

T1

How Z GC works?
generational (JDK 21 -XX:+ZGenerational)

26

● Generational GCs are still a good filter for time and CPU

● Heap divided in 2 logical spaces Young & Old

Generational

27

Young Generation Old Generation

● Each page is assigned to a generation

Z GC Generational

28

Y OY Y Y O O O

Y O

O

O O

OY

Y O

OY

Y

Y O O O

● References exist inter-generation

● Store barriers required to track them

inter generations

29

Y OY Y Y O O O

Y O

O

O O

OY

Y O

OY

Y

Y O O O

● Happen when a reference is written to a field

● If bad color:
○ change color to good one
○ mark object
○ update RememberedSet

● Color the stored reference

Store Barriers

30

● Happens at load time

● if bad color:
○ change for good one
○ check if relocated/relocate/remap

● uncolor loaded reference

Load Barriers

31

● Split responsibility between load and store barriers

● 2 instructions load barriers

● uncolor + check good color

● shift value depends on the current color
and patched on-the-fly

Barrier tricks

32

mov rbp,QWORD PTR [r10+0xb8]
shr rbp,0xd
ja slow_path

● load bits: remapped state (Young & old)
load=0001 shr=13
load=1000 shr=16
ja jumps only if CF=0 && ZF=0

● store bits:
○ Marked (Young & old)
○ Finalizable
○ RememberedSet

Barrier tricks

33

reference address (46 bits)unused
 (2 bits)

unused
 (4 bits)

load
(4 bits)

store
(8 bits)

mov rbp,QWORD PTR [r10+0xb8]
shr rbp,0xd
ja slow_path

test DWORD PTR [rsi+0x10],0xeae0
jne slow_path
mov rdx,rax
shl rdx,0xd
or rdx,0x1510
mov QWORD PTR [rsi+0x10],rdx

● No more Multi-mapping

● Aging in place (no evac for Young region -> Survivor)

● Relocation in-place (same region)

● Large Objects reclaimed in minor GC

Other Changes

34

How to size & troubleshoot?

35

● Like for any GC, the more the better

● More true for Concurrent GC (race with allocation rate)

● cores/threads help also significantly

● Generational GC helps to reduce the need for more memory
amd or more CPU

Heap Sizing

36

● JVM option introduced in JDK 13

● Allow to reduce Heap footprint:
○ Most of the time 2GB
○ Occasionally spikes to 5GB
○ => -XX:SoftMaxHeapSize=2G
○ Above the limit, triggers GC more frequently
○ Uncommits OS pages once usage below the limit

SoftMaxHeapSize

37

● What happens if Allocation rate > GC reclamation?

● Allocating thread will be stalled:
○ Allocation fails
○ Triggers GC
○ Wait for page to be reclaimed to resume allocation

● Any threads trying to allocate can be stalled

Allocation Stalls

38

● GC logs:
[254.528s][info][gc] Allocation Stall (http-nio-8080-exec-4) 36.329ms

[254.528s][info][gc] Allocation Stall (StatsD-Sender-1) 28.825ms

[254.528s][info][gc] Relocation Stall (http-nio-8080-exec-9) 0.423ms

[254.531s][info][gc,alloc] GC(191) y: Mark Start Mark End Relocate Start Relocate End

[254.531s][info][gc,alloc] GC(191) y: Allocation Stalls: 0 10 10 0

Allocation Stalls Monitoring

39

● JFR
jdk.ZAllocationStall event (enabled by default)

$ jfr print --events jdk.ZAllocationStall petclinic-benchmark-profile.jfr

jdk.ZAllocationStall {

 startTime = 10:58:38.982 (2024-05-28)

 duration = 55.1 ms

 type = "Small"

 size = 2.0 MB

 eventThread = "http-nio-8080-exec-8" (javaThreadId = 392)

}

Allocation Stalls Monitoring

40

● JMC

Allocation Stalls Monitoring

41

RetEx: @ Datadog

42

RetEx: @ Datadog

43

References

● Z GC OpenJDK wiki
● Java’s Highly Scalable Low-Latency Garbage Collector : ZGC
● JEP 333: Z GC: A Scalable Low Latency Garbage Collector
● JEP 439: Generational Z GC
● Adventures in Concurrent Garbage Collector
● Throughput Analysis of Safepoint-attached Barriers in a Low Latency GC
● JVMLS: Generational GC and Beyond
● Introducing Z GC
● JEP 312: Thread-Local Handshakes
● JEP 376: Z GC: Concurrent Thread-Stack Processing

44

https://wiki.openjdk.org/display/zgc/Main
https://www.youtube.com/watch?v=U2Sx5lU0KM8
https://openjdk.org/jeps/333
https://openjdk.org/jeps/439
https://pliss.org/2023/slides/ZGC_2023.pdf
https://kth.diva-portal.org/smash/get/diva2:1737851/FULLTEXT01.pdf
https://www.youtube.com/watch?v=YyXjC68l8mw
https://inside.java/2023/11/28/gen-zgc-explainer/
https://openjdk.org/jeps/312
https://openjdk.org/jeps/376

Q&A

45

@jpbempel

● Barrier code was historically inserted directly into JIT’s IR

● Benefits from JIT’s optimizations

● But consume significant time in CPU

● Hard to maintain

Bonus: Late Barrier Expansion

46

● Hard coded barriers by cpu arch (JDK-8230565)

● WIP for G1 (JEP 475)
petclinic startup with G1 on JDK 17:

ptclinic startup with Z GC on JDK 17:

Bonus: Late Barrier Expansion

47

https://bugs.openjdk.org/browse/JDK-8230565
https://openjdk.org/jeps/475

