
Mastering GC: tame the beast and make it 
your best ally

Jean-Philippe Bempel

@jpbempel



Agenda

● OpenJDK GCs
○ Serial GC
○ Parallel GC
○ G1
○ Shenandoah
○ Z GC

● Selecting the right GC

● Tuning GC



OpenJDK GCs



Serial GC

● Generational

● Single threaded

● Stop-The-World

● Default GC for < 2GB or < 2 cores



Spaces & generations



Semi-spaces: Survivors

Young Old

Eden S0 S1

Young

Live objects

Dead objects

55

1

1



Parallel GC

● Generational

● Multi threaded

● Stop-The-World



Minor GC marking

Young Old

Live objects

Dead objects



Remember Set: Card Table

Young 0 0 1

Live objects

Dead objects



G1 GC

● Generational

● Multi threaded

● Stop-The-World/Concurrent

● Region based



Regions



Regions

Credit: Kirk Pepperdine



● Memory reclaimed by evacuation of a region (copying objects/compacting)

● Limiting copy and focus on regions with most garbage => G1

● When evacuating objects, you update refs, but avoid scanning the full heap

● Using RememberSet to know which region to scan for refs

Regions



RememberSet



Shenandoah GC

● Not generational (single space)

● Fully Concurrent 

● Region based



Concurrent Evacuation: challenges

● How to make sure we can reach an object that is evacuating?

● Read (Load) Barrier
○ Everytime we are loading an object to access it, we check if we need to find it elsewhere or not

● Self-Healing
○ Application thread can help fix addresses not yet fixed by GC threads



Z GC

● Not generational (yet)

● Fully Concurrent

● Region based



Colored pointers

● Store metadata in unused bits of reference address

● 44 bits for addressing 16TB
(Max Heap)

● 4 bits for metadata:
○ Marked0

○ Marked1

○ Remapped

○ Finalizable



Selecting the right GC



Identify your workload: Throughput oriented

● Jobs, processing by steps

● High volume of data

● No response to a human user

● Examples: Spark jobs, Kafka consumer/producer, intakes, ETL, …



Identify your workload: Latency sensitive

● Application based on Request/Response

● Response to human user, even indirect (microservices dependencies)

● Databases 

● Examples: Http/gRPC services, Cassandra



Throughput oriented: Which GC?

● JDK Flight Recorder (JFR) files

● Use JDK Mission Control Library for parsing round robin fashion

● Metric: total runtime of a predefined number of JFR files processed



Throughput oriented: Which GC?



Throughput oriented: Analysis G1



Throughput oriented: Analysis G1



Throughput oriented: Analysis Parallel



Throughput oriented: Analysis Parallel



Latency sensitive: Which GC?

● Spring petclinic demo app

● Send requests and waiting for response

● Metric: Percentiles of latency of each request



Latency sensitive: Which GC?



Latency sensitive: Which GC?



Tuning GC



Tuning Parallel GC

● Very simple to reason about

● Main goal: avoid promoting short/middle lived object to postpone Full GC

● Adjust young gen to reach this goal depending on your workload

● Don’t hesitate to increase the young gen sometimes > 50% of the heap



Tuning Parallel GC



Tuning G1: Humongous 

● Humongous objects are difficult to handle for G1:
○ Creates fragmentation
○ Cannot move
○ Triggers prematurely GC b/c checked during each Humongous alloc

● GC Cause = Humongous allocation
○ Try to adjust HeapRegionSize to reduce Humongous objects
○ But large objects not Humongous need to be moved, may increase pause time…
○ Cannot do if regions are already 32MB…



Tuning G1: Humongous



Tuning G1: Young Gen Resize

● Resize based on target pause time:
○ Increase if pause time < target
○ Decrease if pause time > target

● Goal overshoot leads to aggressive young gen reduction down to 5%:
○ Short young gen generates very frequent Young GC
○ This storm can lead to over promotion/copy of objects and increase of pause time
○ More frequent GCs + significant pause time => worse than overshooting the initial goal

● Use NewSize/MaxNewSize for min and max Young Gen
○ But not NewRatio or Xmn which will fix the Young Gen



Tuning G1: Target pause time

● Main knob for G1 to tune is MaxGCPauseMillis as Target Pause time

● Increase target pause for more throughput (accepting more pause time)

● Decrease target pause time for more low latency, but below 50ms it’s difficult…



Tuning Shenandoah

● To be effective, allocation rate should not overrun the GC

● Otherwise => Pacer or Full GC

● Need heap headroom for having time to collect and reclaim regions

● cores/Conc Gc threads for finishing cycle faster

● Region reclaim is done at the end of the GC cycle 



Tuning Z

● To be effective, allocation rate should not overrun the GC

● Otherwise “Allocation Stall” but No Full GC

● Need heap headroom for having time to collect and reclaim regions

● cores/Conc Gc threads for finishing cycle faster

● Region reclaim is done as soon as relocation is done



Conclusion



How to choose a GC?

● Throughput oriented workload 
○ Parallel GC
○ G1 if no issue and good figures

● Latency sensitive workload
○ Shenandoah
○ Z
○ C4



Why not G1?

● Complexity of the heuristic make it difficult to tune

● Couple of things can go wrong:
○ Fragmentation leading to FullGC, not all Old region are considered
○ RememberSet granularity, Post-Write Barrier, Refinement Threads
○ Evacuation failure (=> full GC), InitiatingHeapOccupancyPercent, G1ReservePercent
○ Young Gen dynamic sizing, drastic reduction leads to minor GC storm
○ Humongous allocations, premature minor GC and fragmentation

● G1 Heuristic can save you or can curse you!



References



References

Understanding low latency GCs
G1 One Garbage Collector to rule them all
Tips for Tuning The G1 GC
G1 Garbage Collector Details and Tuning
What’s the deal with humongous objects in Java?
Shenandoah: The Garbage Collector That Could
Load Reference Barriers
Eliminating forward pointer word
Concurrent GC collectors: ZGC & Shenandoah
Deep Dive into ZGC: A Modern Garbage Collector in OpenJDK
GCEasy.io

https://www.youtube.com/watch?v=MU8NapbG1IQ
http://www.infoq.com/articles/G1-One-Garbage-Collector-To-Rule-Them-All
https://www.infoq.com/articles/tuning-tips-G1-GC
https://www.youtube.com/watch?v=Gee7QfoY8ys
https://devblogs.microsoft.com/java/whats-the-deal-with-humongous-objects-in-java/
https://www.youtube.com/watch?v=VCeHkcwfF9Q
https://rkennke.wordpress.com/2019/05/15/shenandoah-gc-in-jdk13-part-i-load-reference-barriers/
https://rkennke.wordpress.com/2019/05/16/shenandoah-gc-in-jdk-13-part-ii-eliminating-forward-pointer-word/
https://www.youtube.com/watch?v=e2lXj_t7ZBc
https://dl.acm.org/doi/pdf/10.1145/3538532
https://gceasy.io/


Thank You!

Jean-Philippe Bempel

@jpbempel


