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Agenda

● OpenJDK GCs
○ Serial GC
○ Parallel GC
○ G1
○ Shenandoah
○ Z GC

● Selecting the right GC

● Tuning GC



OpenJDK GCs



Serial GC

● Generational

● Single threaded

● Stop-The-World

● Default GC for < 2GB or < 2 cores



Spaces & generations
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Parallel GC

● Generational

● Multi threaded

● Stop-The-World



Minor GC marking
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Remember Set: Card Table

Young 0 0 1

Live objects
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G1 GC

● Generational

● Multi threaded

● Stop-The-World/Concurrent

● Region based



Regions



Regions

Credit: Kirk Pepperdine



● Memory reclaimed by evacuation of a region (copying objects/compacting)

● Limiting copy and focus on regions with most garbage => G1

● When evacuating objects, you update refs, but avoid scanning the full heap

● Using RememberSet to know which region to scan for refs

Regions



RememberSet



Shenandoah GC

● Not generational (single space)

● Fully Concurrent 

● Region based



Concurrent Evacuation: challenges

● How to make sure we can reach an object that is evacuating?

● Read (Load) Barrier
○ Everytime we are loading an object to access it, we check if we need to find it elsewhere or not

● Self-Healing
○ Application thread can help fix addresses not yet fixed by GC threads



Z GC

● Not generational (yet)

● Fully Concurrent

● Region based



Colored pointers

● Store metadata in unused bits of reference address

● 44 bits for addressing 16TB
(Max Heap)

● 4 bits for metadata:
○ Marked0

○ Marked1

○ Remapped

○ Finalizable



Selecting the right GC



Identify your workload: Throughput oriented

● Jobs, processing by steps

● High volume of data

● No response to a human user

● Examples: Spark jobs, Kafka consumer/producer, intakes, ETL, …



Identify your workload: Latency sensitive

● Application based on Request/Response

● Response to human user, even indirect (microservices dependencies)

● Databases 

● Examples: Http/gRPC services, Cassandra



Throughput oriented: Which GC?

● JDK Flight Recorder (JFR) files

● Use JDK Mission Control Library for parsing round robin fashion

● Metric: total runtime of a predefined number of JFR files processed



Throughput oriented: Which GC?



Throughput oriented: Analysis G1



Throughput oriented: Analysis G1



Throughput oriented: Analysis Parallel



Throughput oriented: Analysis Parallel



Latency sensitive: Which GC?

● Spring petclinic demo app

● Send requests and waiting for response

● Metric: Percentiles of latency of each request



Latency sensitive: Which GC?



Latency sensitive: Which GC?



Tuning GC



Tuning Parallel GC

● Very simple to reason about

● Main goal: avoid promoting short/middle lived object to postpone Full GC

● Adjust young gen to reach this goal depending on your workload

● Don’t hesitate to increase the young gen sometimes > 50% of the heap



Tuning Parallel GC



Tuning G1: Humongous 

● Humongous objects are difficult to handle for G1:
○ Creates fragmentation
○ Cannot move
○ Triggers prematurely GC b/c checked during each Humongous alloc

● GC Cause = Humongous allocation
○ Try to adjust HeapRegionSize to reduce Humongous objects
○ But large objects not Humongous need to be moved, may increase pause time…
○ Cannot do if regions are already 32MB…



Tuning G1: Humongous



Tuning G1: Young Gen Resize

● Resize based on target pause time:
○ Increase if pause time < target
○ Decrease if pause time > target

● Goal overshoot leads to aggressive young gen reduction down to 5%:
○ Short young gen generates very frequent Young GC
○ This storm can lead to over promotion/copy of objects and increase of pause time
○ More frequent GCs + significant pause time => worse than overshooting the initial goal

● Use NewSize/MaxNewSize for min and max Young Gen
○ But not NewRatio or Xmn which will fix the Young Gen



Tuning G1: Target pause time

● Main knob for G1 to tune is MaxGCPauseMillis as Target Pause time

● Increase target pause for more throughput (accepting more pause time)

● Decrease target pause time for more low latency, but below 50ms it’s difficult…



Tuning Shenandoah

● To be effective, allocation rate should not overrun the GC

● Otherwise => Pacer or Full GC

● Need heap headroom for having time to collect and reclaim regions

● cores/Conc Gc threads for finishing cycle faster

● Region reclaim is done at the end of the GC cycle 



Tuning Z

● To be effective, allocation rate should not overrun the GC

● Otherwise “Allocation Stall” but No Full GC

● Need heap headroom for having time to collect and reclaim regions

● cores/Conc Gc threads for finishing cycle faster

● Region reclaim is done as soon as relocation is done



Conclusion



How to choose a GC?

● Throughput oriented workload 
○ Parallel GC
○ G1 if no issue and good figures

● Latency sensitive workload
○ Shenandoah
○ Z
○ C4



Why not G1?

● Complexity of the heuristic make it difficult to tune

● Couple of things can go wrong:
○ Fragmentation leading to FullGC, not all Old region are considered
○ RememberSet granularity, Post-Write Barrier, Refinement Threads
○ Evacuation failure (=> full GC), InitiatingHeapOccupancyPercent, G1ReservePercent
○ Young Gen dynamic sizing, drastic reduction leads to minor GC storm
○ Humongous allocations, premature minor GC and fragmentation

● G1 Heuristic can save you or can curse you!
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