
Production profiling with
JDK Flight Recorder

& JDK Mission Control

Jean-Philippe Bempel, Datadog
@jpbempel

1

Production Time Profiling and Diagnostics

“The big challenge is no longer really performance. The big

challenge is profiling, and especially profiling in production.”

- Tony Printezis, JVM engineer, Twitter
(Devoxx 2015, ”Life of a Twitter JVM Engineer”, 49:49) 2

Production Profiling and Diagnostics?

● Minimal Observer Effect
○ Low overhead
○ Not affect the behaviour of the application
○ Not undo optimizations

● Safe to use in production
○ Well tested
○ Widely used

3

● Built into the JVM
● Records information about the JVM and the application
● Low overhead / High performance
● APIs available to record custom information
● Can be used to solve a range of different problems
● Open sourced by Oracle in OpenJDK 11
● Backported to OpenJDK 8 since 8u262/8u272!

Data Flight Recorder for the JVM

4

Resolve problems faster

● Data can always be recorded - no need for a reproducer
● Recordings can be captured and shared
● Find real bottlenecks in your applications

Designed for production systems - low observer effect

● Profiling in JFR will not undo optimizations like scalarization
● Profiling in JFR will not be skewed by safe points (like Async Profiler)

Flight Recorder Helps You...

5

Comprehensive Tool Chain

● Control the Flight Recorder
○ Command line parameters
○ POJO API
○ JMX API
○ jcmd (tool in the JDK)
○ JDK Mission Control

6

Comprehensive Tool Chain

● Add custom data
○ Java API (in the JDK)
○ JDK Mission Control (agent)
○ Third party integrations (Open Tracing, Brave etc)

● Use the data
○ JDK Mission Control (application)
○ JDK Mission Control (core libraries)
○ jfr (tool in the JDK)

7

● Data recorded as events
● Events are data points in time

○ Event types have fields (a.k.a. attributes)
○ Fields are self describing (typed / content types e.g. long / epoch ms)

Flight Recorder Data

8

● CPU Profiling
● Allocation Profiling
● Thread Latency Profiling
● GC
● Compiler
● Memory Leak Profiler
● File & Socket IOs
● ...and much more

Size is typically about 2 megs per minute (app. 100k events)

Different Kinds of Data

9

● High performance recording engine
● Events recorded into thread buffers

Flight Recorder Innards

10

● High performance recording engine
● Events recorded into thread buffers
● When full, copied into global buffer

Flight Recorder Innards

11

● High performance recording engine
● Events recorded into thread buffers
● When full, copied into global buffer
● Can be configured to keep on

overwriting/reusing the buffer

Flight Recorder Innards

12

● High performance recording engine
● Events recorded into thread buffers
● When full, copied into global buffer
● Can be configured to keep on

overwriting/reusing the buffer
● …or emit to disk

Flight Recorder Innards

13

● Easy to correlate with events from the runtime
○ E.g. record a distributed tracing span, with trace id, span id and

parent span id, then see what happened during the processing of that
particular span

● Piggy back on the whole JFR infrastructure
(jcmd, jmc, command line flags)

● High performance
○ High precision, cheap timestamping
○ Cheap stack traces
○ Binary, compact data

● Self describing, easy to consume

Examples: github.com/thegreystone/java-svc/tree/master/jfr

Adding Custom Events

14

Simple JFR Event Generation Example

public class HelloJfr {
@Label("Hello World")
static class HelloWorldEvent extends Event {

@Label("Message")
String message;

}
 public static void main(String [] args) {

HelloWorldEvent event = new HelloWorldEvent();
event.message = "Hello World!";
event.commit();

}
}

15

Metadata Example

@Label("Native Library Load")
@Name("org.example.process.NativeLibraryLoad")
@Description("Emitted on the loading of a native library")
@Category("Process")
public final class LibraryLoadEvent extends Event {

@Label("File Name")
String fileName;

@Label("Start Address")
@MemoryAddress
long startAddress;

@Label("Bytes Loaded")
@DataAmount(DataAmount.BYTES)
long bytesLoaded;

@Label("Library file creation time")
@Timestamp(Timestamp.MILLISECONDS_SINCE_EPOCH)
long creationTime;

} 16

● JDK Mission Control
○ Via JMX

● JCMD
○ Command line tool to talk to running JVMs

● Command line flags
○ -XX:StartFlightRecording=delay=20s,

duration=60s,name=MyRecording,filename=
/tmp/myrecording.jfr,settings=profile

● Programmatically
○ JMX API
○ Pojo API

Controlling the Flight Recorder

17

Contains information about what and how to record, e.g.:

● What event types to enable
● What thresholds to use for events with durations
● What periodicity to sample requestable events

There are two templates by default:

● default.jfc – less than 1% overhead
● profiling.jfc – less than 2% overhead

Templates are located in the lib/jfr folder of the JDK.

Templates can be edited and exported from JMC.

Flight Recorder Templates (.jfc files)

18

● JDK jfr tool
○ Simple command-line tool to look at recordings

● JDK parser
○ Supports recordings with the JDK version the recording was created
○ Included in the JDK
○ External iteration

Looking at Flight Recordings

19

● JMC core parser
○ Supports recordings from all versions of JFR
○ Compiles and runs on JDK 8+
○ Analysis Rules
○ Declarative / Internal iteration
○ Available as Maven artifacts

Looking at Flight Recordings

20

● JMC

Looking at Flight Recordings

21

● Datadog Profiling!

Looking at Flight Recordings

22

● Every profiler in existence will lie to you
○ Change runtime behaviour (e.g. undo optimizations)
○ Biases (safe point bias)

● Talk: Profilers Are Lying Hobbits (and we hate them!) from Nitsan
Wakart

The profiler will always lie to you...

23

https://www.infoq.com/presentations/profilers-hotspots-bottlenecks/

● Know your profiler and it’s chosen trade-offs
○ JFR Execution Samples (CPU profiling) choses low runtime impact

and constant overhead. Will _not_ include native samples.
○ JFR allocation profiling is sampling for nursery allocations - not exact

counts but a good estimation, especially over time.
○ JFR provides contextual information, e.g. for locks (monitor enter):

■ Thread monitor class
■ Which thread was holding the monitor
■ Monitor address
■ …

There is always a price, in this case thresholds...

The profiler will always lie to you...

24

JFR Demos

25

JDK Mission Control

26

Tools suite

● JFR
○ Create
○ Analyze

● JMX Console

○ Real time monitoring

● Additional plug-ins

○ JOverflow

○ Moar JFR

○ Plug-in plug-in

JDK Mission Control - JMC

27

● OpenJDK project
● Actively worked on by Oracle, RedHat, DataDog, individual

contributors…

● Several distributions of the application… and Eclipse plug-ins

Open Source

28

File System

Where to get Flight Recordings

29

● JFR Wizard for creating recordings

● Rules Overview
● Prebuilt pages

○ Method Profiling
○ Locks
○ Memory
○ ...

● Event Browser
○ All the events

● Custom pages
○ For JDK events or your custom events

Mission Control + Flight Recorder UI

30

JMC Demos

31

Extensive API

public static void main(String[] args) throws Exception {
 var file = new File(args[0]);

 IItemCollection events = JfrLoaderToolkit.loadEvents(file);
 IItemCollection monitorEnterEvents = events.apply(JdkFilters.MONITOR_ENTER);

 IQuantity eventCount = monitorEnterEvents.getAggregate(Aggregators.count());
 IQuantity avg = monitorEnterEvents.getAggregate(Aggregators.avg((JfrAttributes.DURATION));
 IQuantity stddev = monitorEnterEvents.getAggregate(Aggregators.stddev(JfrAttributes.DURATION));

 System.out.println(String.format("# of events: %d, avg: %s, stdddev: %s\n",
 eventCount.longValue(),
 avg.displayUsing(IDisplayable.AUTO),
 stddev.displayUsing(IDisplayable.AUTO)));
}

32

HTML Report Example

public static void main(String[] args) throws Exception {
var file = new File(args[0]);
var recording = JfrLoaderToolkit.loadEvents(file);
var report = JfrHtmlRulesReport.createReport(recording);

System.out.println(report);
}

33

JMC core Demos

34

● Incubation project in JMC
○ Not published (yet)
○ Build from source

● Declaratively insert JFR events anywhere

JMC Agent

<event id="demo.jfr.MyEvent" >
<name>My Awesome Event</ name>
<description>This is the best event ever.</ description>
<path>demo/jfr</path>
<stacktrace>true</stacktrace>
<class>org.openjdk.jmc.agent.test.InstrumentMe</ class>
<method>

<name>myInstrumentedMethod</ name>
<descriptor>(Lorg/openjdk/jmc/bciagent/test/Gurka;)V</ descriptor>
<parameter index="0">

<name>Gurka Attribute</ name>
<description>The one and only Gurk-parameter</ description>
<contenttype>None</contenttype>

</parameter>
</method>

</event>
35

Summary

36

Join the project mailing list and start coding right now!

Repo: https://github.com/openjdk/jmc

Mailing list: http://mail.openjdk.java.net/mailman/listinfo/jmc-dev

Slack: https://jdkmissioncontrol.slack.com

Download JMC: Your distribution of choice (e.g. AdoptOpenJDK)

JMC Tutorial: https://github.com/thegreystone/jmc-tutorial

Resources

37

Q & A

38

@jpbempel

