
Jean-Philippe BEMPEL

WebScale
@jpbempel

Understanding
JVM GC

2 •

• GC basics

• G1

• Shenandoah

• Azul’s C4

• ZGC

• How to choose a GC algorithm?

Understanding JVM GC: Advanced!

GC Basics

4 •

Generations

5 •

• Traversing references to mark live objects

• Stopping when reaching old generation

• From GC roots (static fields, thread stack, JNI)

Marking for Minor GC

Young Old

6 •

Card Table for references old -> young references

Write barrier to update card table on assignation

X.f = Y

Card Table

Young 0 0 1

CARD_TABLE[&X >> 9] = 1

mov DWORD PTR [r10+0x6c],r8d

mov r11,r10

shr r11,0x9

mov r8d,0x2383000

mov BYTE PTR [r8+r11*1],r12b

G1

8 •

• Generational

• Region based

• Pause time target (soft real-time)

• -XX:MaxGCPauseMillis=n (default 200)

• Default GC since JDK9

Garbage First

9 •

Heap divided into fixed-size regions

Regions

10 •

Regions

Credit: Kirk Pepperdine

11 •

• Young collection (STW)

• Initial Mark (STW)

• Concurrent Marking

• Final Remark (STW)

• Cleanup (STW)

• Mixed collection (STW)

G1 phases

12 •

• Stop-The-World event

• Evacuates live objects to Survivor or Old regions

• Only objects in young generation are considered

Young GC

13 •

• Card table per region

• Avoid scanning the entire heap

Remembered Sets

14 •

• For each reference assignation (X.f = Y) we need to check:

• References (X & Y) are NOT in the same region

• Y is not null

• => enqueue for Remebered Set processing

• Refinement threads to process the queue

• Additional instructions added after assignation

Remembered Sets: Post Write Barrier

if (!isInSameRegion(X, Y)

&& Y != null)

RSEnqueue(X)

mov DWORD PTR [rbp+0x74],r10d

mov r11,rbp

mov r8,r10

shl r8,0x3

xor r8,r11

shr r8,0x14

test r8,r8

je cont

test r10d,r10d

je cont

shr r11,0x9

movabs rcx,0x2965ecc3000

add rcx,r11

cmp BYTE PTR [rcx],0x20

je cont

mov r10,QWORD PTR [r15+0x70]

mov r11,QWORD PTR [r15+0x80]

lock add DWORD PTR [rsp-0x40],0x0

cmp BYTE PTR [rcx],0x0

je cont

mov BYTE PTR [rcx],0x0

test r10,r10

jne 0x000002965edc62bc

mov rdx,r15

movabs r10,0x7ffac2febc30

call r10

jmp cont

mov QWORD PTR [r11+r10*1-0x8],rcx

add r10,0xfffffffffffffff8

mov QWORD PTR [r15+0x70],r10

15 •

• Triggered based on Initiating Heap Occupancy Percent flag (IHOP default to 45%)

• Try to mark the whole object graph concurrently with the application running

• Based on Tri-color abstraction & Snapshot-At-The-Beginning algorithm

Concurrent Marking

16 •

Concurrent Marking: Tri-Color Abstraction

17 •

Concurrent Marking: Issues

• New allocations during marking phase can be handled by:

• Marking automatically object at allocation

• Not considering new allocations for the current cycle

• Tri-Color abstraction provides 2 properties of missed object:

1. The mutator stores a reference to a white object into a black object.

2. All paths from any gray objects to that white object are destroyed.

http://www.memorymanagement.org/glossary/s.html#term-snapshot-at-the-beginning

18 •

Concurrent Marking: Issues

A

B

C

A.field1 = C;

B.field2 = null;

OOPS!

19 •

• 2 ways to ensure not missing any marking

• For SATB, Pre-Write Barriers, recording object for marking

• SATB barrier is only active when Marking is on (global state)

Concurrent Marking: Resolving misses

if (SATB_WriteBarrier) {

if (X.f != null)

SATB_enqueue(X.f);

}

cmp BYTE PTR [r15+0x30],0x0

jne 0x000002965edc62e5

[...]

mov r11d,DWORD PTR [rbp+0x74]

test r11d,r11d

je 0x000002965edc6253

mov r10,QWORD PTR [r15+0x38]

mov rcx,r11

shl rcx,0x3

test r10,r10

je 0x000002965edc6318

mov r11,QWORD PTR [r15+0x48]

mov QWORD PTR [r11+r10*1-0x8],rcx

add r10,0xfffffffffffffff8

mov QWORD PTR [r15+0x38],r10

jmp 0x000002965edc6253

mov rdx,r15

movabs r10,0x7ffac2febc50

call r10

jmp 0x000002965edc6253

20 •

• At the end of Marking, we have per region liveness information

• Regions are sorted by liveness (ascending)

• Regions full of garbage are collected during cleanup STW phase

• CollectionSet is built based on

• Liveness, up until thresholds (G1HeapWastePercent,
G1MixedGCLiveThresholdPercent)

• Maximum number of regions (G1OldCSetRegionThresholdPercent)

CollectionSet

21 •

• Based on CollectionSet, G1 schedule to collect part of old regions

• When a Young is triggered, old regions to collect are piggy backed

• Not all old regions are considered to not waste time and reach the pause goal

• Several Young GCs can be used to collect old regions (mixed event)

Mixed GC

22 •

Mixed GC

23 •

• Still fallback to FullGC (serial < JDK10)

• Fragmentation can still happen (regions with lot of lived objects)

• Still unpredictable

FullGC

Shenandoah

25 •

• Non-generational (still option for partial collection)

• Region based

• Use Read Barrier: Brooks pointer

• Self-Healing

• Cooperation between mutator threads & GC threads

• Only for concurrent compaction

• Mostly based on G1 but with concurrent compaction

Shenandoah GC

26 •

• Initial Marking (STW)

• Concurrent Marking

• Final Remark (STW)

• Concurrent Cleanup

• Concurrent Evacuation

• Init Update References (STW)

• Concurrent Update References

• Final Update References (STW)

• Concurrent Cleanup

Shenandoah Phases

27 •

• SATB-style (like G1)

• 2 STW pauses for Initial Mark & Final Remark

• Conditional Write Barrier

• To deal with concurrent modification of object graph

Concurrent Marking

28 •

• Same principle than G1:

• Build CollectionSet with Garbage First!

• Evacuate to new regions to release the region for reuse

• Concurrent Evacuation done with the help of:

• 1 Read Barrier : Brooks pointer

• 4 Write Barriers

• Barriers help to keep the to-space invariant:

• All Writes are made into an object in to-space

Concurrent Evacuation

29 •

• All objects have an additional forwarding pointer

• Placed before the regular object

• Dereference the forwarding pointer for each access

• Memory footprint overhead

• Throughput overhead

Brooks pointers

Header

Brooks pointer

mov r13,QWORD PTR [r12+r14*8-0x8]

30 •

Concurrent Copy: GC thread

Header

Brooks pointer

Header

Brooks pointer

From-Space To-Space

GC thread

31 •

Concurrent Copy: Reader threads

Header

Brooks pointer

From-Space To-Space

Reader

thread
Reader

thread

32 •

Concurrent Copy: Writer threads

Header

Brooks pointer

Header

Brooks pointer

From-Space To-Space

Writer

thread

Writer

thread

Header

Brooks pointer

33 •

• Any writes (even primitives) to from-space object needs to be protected

• Exotic barriers:

• acmp (pointer comparison)

• CAS

• clone

Write Barriers

if (evacInProgress

&& inCollectionSet(obj)

&& notCopyYet(obj)) {

evacuateObject(obj)

}

test BYTE PTR [r15+0x3c0],0x2

jne 0x000000000281bcbc

[...]

mov r10d,DWORD PTR [r13+0xc]

test r10d,r10d

je 0x000000000281bc2b

mov r11,QWORD PTR [r15+0x360]

mov rcx,r10

shl rcx,0x3

test r11,r11

je 0x000000000281bd0d

[...]

mov rdx,r15

movabs r10,0x62d1f660

call r10

jmp 0x000000000281bc2b

34 •

• Late memory release

• Only happens when all refs updated (Concurrent Cleanup phase)

• Allocations can overrun the GC

• Failure modes:

• Pacing

• Degenerated GC

• FullGC

Extreme cases

Azul’s C4

36 •

• Generational (young & old)

• Region based (pages)

• Use Read Barrier: Loaded Value Barrier

• Self-Healing

• Cooperation between mutator threads & GC threads

• Pauseless algorithm but implementation requires safepoints

• Pauses are most of the time < 1ms

Continuously Concurrent Compacting Collector

37 •

• Baker-style Barrier

• move objects through forwarding addresses stored aside

• Applied at load time, not when dereferencing

• Ensure C4 invariants:

• Marked Through the current cycle

• Not relocated

• If not => Self-healing process to correct it

• Mark object

• Relocate & correct reference

• Checked for each reference loads

• Benefits from JIT optimization for caching loaded value (registers)

LVB

38 •

• States of objects stored inside reference address => Colored pointers

• NMT bit

• Generation

• Checked against a global expected value during the GC cycle

• Thread local, almost always L1 cache hits

• Register

• Relocated: x86 Implementation use trap from VM memory translation Guest/Host

• Intel EPT

• AMD NPT

LVB

test r9, rax

jne 0x3001443b

mov r10d, dword ptr [rax + 8]

39 •

Virtual Memory vs Physical Memory

Virtual Memory

Physical Memory

0 2^64

0 2^37

40 •

• All phases are fully parallel & concurrent

• No "rush" to finish phases

• No constraint about STW pause to be short

• Physical memory released quickly in relocation phase

• Can be reused for new allocations

• Plenty of virtual space vs physical memory

C4 Phases

41 •

• Mark

• Marking all objects in graph

• Relocation

• Moving objects to release pages

• Remap

• Fixup references in object graph

• Folded with next mark cycle

C4 Phases

42 •

• Incremental Update Marking (vs SATB)

• Single pass

• No final mark/remark

• Self-Healing: Mark object that are not marked for the current cycle

Mark Phase

43 •

Mark Phase: Concurrent Modification

A

B

C

A.field1 = C;

B.field2 = null;

LVB

44 •

• Scanning roots (Static var, Thread stacks, register, JNI handles)

• GC threads scans stalled threads

• Running threads scans their own stack stopping individually at Safepoint

• Scanning object graph like a parallel collector

• Newly allocated objects into new pages, not considered for reclaim (relocation)

• For each page, summing live data bytes, used to select page to reclaim

Mark Phase

45 •

• Select pages with the greatest number of dead objects (garbage first!)

• Protect page selected from being accessed by mutators thread

• Move objects to new allocated pages

• Build side arrays (off heap tables) for forwarding information

• Self-Healing: As protected, LVB will trigger a trap to:

• Copy object to the new location if not done

• Use forward pointer to fix the reference

Relocation Phase

46 •

Virtual

Physical

Relocation Phase

Forwarding table

47 •

• Few chances mutators stall on accessing a ref as processing mostly dead pages

• Once object copy done, physical memory is released (Quick Release)

• Can be immediately reused (remapped) to satisfy new allocations

• Pages evacuated are still mapped & protected to help remap phase

• Cannot be released until all objects are remapped

• Not a problem as we have a huge virtual address space

Relocation Phase

48 •

• Traverse Object Graph and fixup references

• Execute LVB barrier for each object

• Self-Healing: fixup references using forward information

• As we traverse again, mark for the next phase

• Mark & Remap phases are folded!

Remap Phase

49 •

• Algorithm requires a sustainable rate or remapping operations

• Linux limitations:

• TLB invalidation

• Only 4KB pages can be remapped

• Single threaded remapping (write lock)

• Kernel module implements API for the Zing JVM to increase significantly the remapping rate

• Implements also virtual address aliasing for addressing objects with metadata

Remap – Kernel module

50 •

• Young & Old collections done by same algorithm and can be concurrent

• Size of the generation are dynamically adjusted

• Card Marking with write barrier (Stored Value Barrier)

• Old collection is based on young-to-old roots generated by previous young cycle

• Young collection will perform card scanning per page

• hold an eventual concurrent Old collection per page scanned

Generational

51 •

• Used by Hadoop Name Node

• 580GB Heap

• Very hard to tune with G1

• No issue so far regarding GC since production roll out (Oct 2017)

C4 @ Criteo

Z GC

53 •

• Non generational

• Region based (zPages, dynamically sized)

• Concurrent Marking, Compaction, Ref processing

• Use Colored Pointers & Read/Load Barrier

• Self-Healing

• Cooperation between mutator threads & GC threads

• Experimental in JDK 11 (-XX:+UnlockExperimentalVMOptions –XX:+UseZGC)

Z GC

mov r10,QWORD PTR [r11+0xb0]

test QWORD PTR [r15+0x20],r10

jne 0x00007f9594cc54b5

54 •

Z GC

55 •

• Initial Mark (STW)

• Concurrent Mark/Remap

• Final Mark (STW)

• Concurrent Prepare for Relocation

• Start Relocate (STW)

• Concurrent Relocate

Z GC phases:

56 •

• Store metadata in unused bits of reference address

• 42 bits for addressing (4TB)

• 4 bits for metadata

• Marked0

• Marked1

• Remapped

• Finalizable

Colored Pointers

57 •

• Colored pointers needs to be unmasked for dereferencing

• Some HW support masking (SPARC, Aarch64))

• On linux/windows, overhead if done with classical instructions

• Only one view is active at any point

• Plenty of Virtual Space

Multi-Mapping

58 •

Multi-Mapping

Virtual Memory

Physical Memory

0 2^64

0 2^37

(marked0)

001<address>

(marked1)

010<address>

(remapped)

100<address>

59 •

• Pages are multiple of 2MB

• 3 different groups

• Small: 2MB pages with object size <= 256KB

• Medium: 32MB pages with object size <= 4MB

• Large: 2MB pages, objects span over multiple of them

• Objects in Large group are meant to not to be relocated (too expensive)

Page Allocations

60 •

• Handling remapping
• C4: Memory protection + trap
• Z: mask in colored pointer

• Unmasking ref addresses
• C4: Kernel module aliasing
• Z: Multi-mapping or HW support

• Pages & Relocation
• C4:

• Page are fixed to match OS size (mem protection)
• relocation for large objects by remapping

• Z:
• zPages are dynamic, a zPage can be 100MB large
• No relocation for large objects

Difference between C4 & Z GC

How to choose a GC algorithm

62 •

• Case 1:

• Need maximum of work done in a time frame (offline job)

• Can afford FullGC of several seconds

 Use a throughput collector like ParalleGC or G1

• Case 2:

• Have time constraint per unit of work (online job)

• Cannot afford FullGC of several seconds

 Use a low latency collector like C4, Shenandoah or Z

Throughput vs Latency

63 •

• You have to run on Windows

• Shenandoah

• Battlefield tested GC (maturity)

• C4

• Shenandoah

• Minimizing any kind of JVM pauses

• C4

• Z

• You don’t want pay for it:

• Shenandoah

• Z

Low latency GCs

References

65 •

• Java Garbage Collection distilled by Martin Thompson

• The Java GC mini book

• Oracle’s white paper on JVM memory management & GC

• What differences JVM makes by Nitsan Wakart

• Memory Management Reference

• IBM Pause-Less GC

References GC Basics

http://www.infoq.com/articles/Java_Garbage_Collection_Distilled/
http://www.infoq.com/resource/minibooks/java-garbage-collection/en/pdf/The-Java-Garbage-Collection-Mini-book.pdf
http://www.oracle.com/technetwork/java/javase/tech/memorymanagement-whitepaper-1-150020.pdf
https://psy-lob-saw.blogspot.com/2018/01/what-difference-jvm-makes.html
http://www.memorymanagement.org/
http://www.memorymanagement.org/

66 •

• Garbage-First Garbage Collection (2004)

• G1 One Garbage Collector to rule them all by Monica Beckwith

• Tips for Tuning The G1 GC by Monica Beckwith

• G1 Garbage Collector Details and Tuning by Simone Bordet

• Write Barriers in Garbage-First Garbage Collector by Monica Beckwith

References G1

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.63.6386&rep=rep1&type=pdf
http://www.infoq.com/articles/G1-One-Garbage-Collector-To-Rule-Them-All
https://www.infoq.com/articles/tuning-tips-G1-GC
https://www.youtube.com/watch?v=Gee7QfoY8ys
https://www.jfokus.se/jfokus17/preso/Write-Barriers-in-Garbage-First-Garbage-Collector.pdf

67 •

• Shenandoah: An open-source concurrent compacting garbage collector for OpenJDK

• Shenandoah: The Garbage Collector That Could by Aleksey Shipilev

• Shenandoah GC Wiki

References Shenandoah

https://www.researchgate.net/profile/Christine_Flood/publication/306112816_Shenandoah_An_open-source_concurrent_compacting_garbage_collector_for_OpenJDK/links/5a0de9230f7e9b7d4dba54f9/Shenandoah-An-open-source-concurrent-compacting-garbage-collector-for-OpenJDK.pdf?origin=publication_detail
https://www.youtube.com/watch?v=VCeHkcwfF9Q
https://wiki.openjdk.java.net/display/shenandoah/Main

68 •

• The Pauseless GC algorithm (2005)

• C4: Continuously Concurrent Compacting Collector (2011)

• Azul GC in Detail by Charles Humble

• 2010 version source code

References C4

https://www.usenix.org/legacy/events/vee05/full_papers/p46-click.pdf
http://paperhub.s3.amazonaws.com/d14661878f7811e5ee9c43de88414e86.pdf
https://www.infoq.com/articles/azul_gc_in_detail
https://github.com/GregBowyer/ManagedRuntimeInitiative/tree/master/MRI-J/hotspot/src/azshare/vm/gc_implementation/genPauseless

69 •

• ZGC - Low Latency GC for OpenJDK by Per Liden

• Java's new Z Garbage Collector (ZGC) is very exciting by Richard Warburton

• A first look into ZGC by Dominik Inführ

• Architectural Comparison with C4/Pauseless

References ZGC

https://www.youtube.com/watch?v=tShc0dyFtgw
https://www.opsian.com/blog/javas-new-zgc-is-very-exciting/
https://dinfuehr.github.io/blog/a-first-look-into-zgc/
http://mail.openjdk.java.net/pipermail/zgc-dev/2017-December/000047.html

Thank You!

@jpbempel

